
 Glyndŵr University Research Online

Conference Presentation

Comparative analysis and practical implementation of the
ESP32 microcontroller module for the Internet of Things

Maier, A., Sharp, A. and Vagapov. Y.

This is a paper presented at the 7th IEEE Int. Conference on Internet Technologies and
Applications ITA-17, Wrexham, UK

Copyright of the author(s). Reproduced here with their permission and the permission of the
conference organisers.

Recommended citation:

Maier, A., Sharp, A. and Vagapov. Y. (2017). Comparative analysis and practical implementation of the
ESP32 microcontroller module for the Internet of Things. In: Proc. 7th IEEE Int. Conference on Internet
Technologies and Applications ITA-17, Wrexham, UK

Abstract—This paper discusses the Espressif Systems latest

product ESP32 designed for Internet of Things and embedded

system related projects. The ESP32 is a low-cost, low-power

system on a chip series of microcontrollers with Wi-Fi and

Bluetooth capabilities and a highly integrated structure powered

by a dual-core Tensilica Xtensa LX6 microprocessor. This paper

provides a comparative analysis of the ESP32 with some other

market competitors and introduces the microcontroller

specification, features and programming details. A portable,

wireless oscilloscope based on the ESP-WROOM-32 and a mobile

application is described in detail as an example of successful

practical implementation of the device.

Keywords—ESP32, Internet of Things, Wi-Fi, oscilloscope

I. INTRODUCTION

The Internet of Things (IoT) market has rapidly expanded
over the last few years following the increased demand in
communication and control for various devices and gadgets.
The main requirement applied for modern IoT devices is to
provide an effective connectivity to ensure reliable remote
communication and data transfer in a wireless environment.
This concept for IoT devices is called 6A (Anything, Anytime,
Anyone, Anyplace, Any service, and Any network) [1].

The IoT technology significantly impacts on behaviour
and lifestyle of people in both working and domestic
environments. The advanced communication capabilities
dramatically reshape properties and operation of industrial
automation and manufacturing, business and process
management, intelligent transportation and logistics, etc. In
terms of domestic applications, IoT enhances home
automation and introduces new, communication based
technologies such as domotics, assisted living, e-health and e-
learning, etc. [2].

In order to develop the IoT further and expand the area of
its applications, a powerful, low-cost and low-power solutions
for the IoT devices are required. Another requirement for an
IoT device is to have a small form-factor; the smaller size and
weight of the device the wider the area of its applications.
Each IoT based unit comprises of a microcontroller (µC) and a
wireless commutation module (usually WiFi), or a
combination of both in one. A large variety of modules and

µC are already on the market and widely used for the design
and development of IoT devices. These are Xbee, WhizFi,
certain Arduino boards, etc. However, most of currently
offered devices are either quite expensive or large in terms of
weight and size. Moreover, very few modules are open source
devices and have no restriction in the operation purpose. A
new device QFN48 called ESP32 will be released in the
market by Espressif Systems in September 2016 to replace the
previous µC ESP8266. ESP32 device is a powerful
microcontroller with build in Wi-Fi and Bluetooth®, designed
to be a perfect solution for IoT devices [3].

This paper presents a detailed comparison of the ESP32 to
its competitors including competitive analysis of its technical
features and functions. The paper also describes how to
program ESP32 and discusses an example application
demonstrating a practical implementation of the
microcontroller.

II. COMPARATIVE ANALYSIS OF ESP32

Along with the release of ESP32, Espressif Systems also
offers a corresponding module ESP-WROOM-32. Despite the
small size (25.5 x 18.0 x 2.8mm) it is very easy to use the

Comparative Analysis and Practical Implementation

of the ESP32 Microcontroller Module

for the Internet of Things

Alexander Maier, Andrew Sharp, Yuriy Vagapov

School of Applied Science, Computing and Engineering,

Glyndwr University, Plas Coch, Mold Road,

Wrexham, LL11 2AW, UK

Fig. 1. ESP32 system structure.

978-1-5090-4815-1/17/$31.00 ©2017 IEEE

module due to integrated components such as antenna,
oscillator and flash. Similar modules for other
microcontrollers are often used for tests and prototypes or by
hobbyists. Table I compares some of those in detail [4]-[7].

The table shows the details of 4 modules and µC used for
the design of IoT devices. Actually, the variety of modules
and microcontrollers for IoT are much bigger but most of
them have the same problems related to size, performance and
price. For example, the boards like RTLDuino are open source
and can handle complex tasks on their own unlike the Xbee,
but they are quite large in terms of size. On the other hand,
ESP32 QFN48, compared to other microcontrollers, is a very
small component having a size of just 5mm x 5mm. Due to the
published circuit of the module ESP-WROOM-32 it is easy to
integrate ESP32 onto a custom PCB and design a space saving
device. The board ESP32-DevKitC is a bread-board friendly,
ready to use solution for testing and educational purposes.
ESP8266, ESP32 predecessor, was extremely popular for the
design in many IoT related projects, however, ESP32 is a
better solution which can be implemented in more complex
projects.

III. ESP32 TECHNICAL DETAILS AND FUNCTIONS

A. System and Memory

ESP32 is a dual-core system with two Harvard
Architecture Xtensa LX6 CPUs. All embedded memory,
external memory and peripherals are located on the data bus
and/or the instruction bus of these CPUs. The microcontroller
has two cores – PRO_CPU for protocol and APP_CPU for
application, however, the purposes of those are not fixed. The
address space for both data and instruction bus is 4GB and the
peripheral address space is 512KB. Moreover, the embedded
memories are 448KB ROM, 520KB SRAM and two 8KB
RTC memory. The external memory supports up to four times
16MB Flash [4].

B. Clock and Timer

ESP32 can use either he internal Phase Lock Loop (PLL)
of 320MHz or an external crystal. It is also possible to use an
oscillating circuit as a clock source at 2-40MHz to generate
the master clock CPU_CLK for both CPU cores. This clock
can be as high as 160MHz for high performance or lower to

TABLE I. MICROCONTROLLES FOR THE IOT DESIGN [4]-[7]

Chip

(Module)

ESP32

(ESP-WROOM-32)

ESP8266

(ESP8266-12E)

CC32

(CC3220MODSF)

Xbee

(XB2B-WFPS-001)

Details:

CPU
Tensilica Xtensa LX6

32 bit Dual-Core at 160/240 MHz

Tensilica LX106

32 bit at 80 MHz (up to 160 MHz)
ARM Cortex-M4 at 80 MHz N/A

SRAM 520 KB 36 KB available 256 KB N/A

FLASH 2MB (max. 64MB) 4MB (max. 16MB) 1MB (max. 32MB) N/A

Voltage 2.2V to 3.6V 3.0V to 3.6V 2.3V to 3.6V 3.14V to 3.46V

Operating Current 80 mA average 80 mA average N/A N/A

Programmable Free (C, C++, Lua, etc.) Free (C, C++, Lua, etc.) C (SimpleLink SDK) AT and API commands

Open source Yes Yes No No

Connectivity:

Wi-Fi 802.11 b/g/n 802.11 b/g/n 802.11 b/g/n 802.11 b/g/n

Bluetooth® 4.2 BR/EDR + BLE - - -

UART 3 2 2 1

I/O:

GPIO 32 17 21 10

SPI 4 2 1 1

I2C 2 1 1 -

PWM 8 - 6 -

ADC 18 (12-bit) 1 (10-bit) 4 (12-bit) 4 (12-bit)

DAC 2 (8-bit) - - -

Size 25.5 x 18.0 x 2.8 mm 24.0 x 16.0 x 3.0 mm 20.5 x 17.5 x 2.5 mm 24.0 x 22.0 x 3.0 mm

Prize £8 £5 £16 £23

reduce the power consumption. All other clocks, like the
APB_CLK for peripherals are driven by the master clock. In
addition, there are several low power clocks like the internal
RTC_CLK with a default frequency of 150kHz and the option
to adjust it for deep sleep modes. There are four 64-bit timers
for generic purposes with 16-bit prescalers with a range from
2 to 65536. Each timer uses the APB clock, usually at 80MHz.
Those timers can count either up or down, be frozen and
trigger events. Besides 4 generic timers there are also timers to
drive the PWM controller. There are 8 high speed and 8 low
speed PWM channels, each driven by four timers [4].

C. Block Diagram and Functions

ESP32 microcontroller structure is designed to operate
under the following protocols – TCP/IP, full 802.11 b/g/n/e/i
WLAN MAC, and Wi-Fi Direct specification. The
microcontroller can provide Basic Service Set (BSS) STA and
SoftAP operations under the Distributed Control Function
(DCF) protocol. It is also support P2P group operation
compliant with the latest Wi-Fi P2P protocol. Thus, it can

operate as a station and be connected to the internet or server
and access point in order to provide a user interface to, for
example, smartphone running a mobile application [8].

The microcontroller supports v4.2 BR/EDR and BLE
Bluetooth which fits the current standard and is capable to
operate at a speed up to 4 Mbps. ESP32 can operate under
various power modes – active mode (the chip radio is
working) and modem-sleep mode (CPU is fully operational
but Wi-Fi and Bluetooth is powered off). Furthermore, there
are light and deep-sleep modes, where either both or only one
CPU are operating at a lower performance. The GPIOs include
two 12-bit ADCs with 18 channels in sum. Those can be
configured for 9-bit, 10-bit and 12-bit resolutions with an
attenuation of −0dB, −6dB or −11dB for different input
ranges. One ADC channel is connected to the integrated hall
sensor in order to detect magnetic fields, whereas another to
the temperature sensor with the range from −40°C to 125°C to
monitor the chip temperature. Besides the ADCs there are also
two 8-bit DACs to convert the digital signals into analogue
voltage signal outputs. Ten of the GPIOs are capable to sense
capacitive variations and can be used for touch sensors. Since
those are high sensitive relatively small pads can be used.
Moreover, ESP32 provides a number of interfaces: an
Ethernet MAC Interface, one SD/SDIO/MMC Host
Controller, three UART interfaces up to 5Mbps, two I2C bus
interfaces with standard and fast mode, two I2C interfaces
with a frequency of 10kHz up to 10MHz, an 8-channel
infrared remote controller and an 8-channel pulse counter. The
PWM controller can be used to drive digital motors or
generate digital waveforms. Three SPIs can be used in slave or
master mode with a clock up to 80MHz. [8].

D. Programming the ESP32

The real-time operating system on ESP32 is FreeRTOS. It
is open source, designed for embedded systems and provides
basic functions to the higher-level applications. The core
functions are memory management, task management and API
synchronization [9].

The usual way to program the ESP32 is using the ESP-
IDF, Espressif Systems Internet of Things development
framework, which is available on their GitHub repository. The
ESP-IDF was developed for Linux, thus a Linux terminal is
required in order to execute the bash files. However, it
possible to develop in Windows by using MSYS2. This
software provides a Linux terminal in Windows. Furthermore,
the ESP-IDF-Template is required order to start an ESP32
project. It includes all necessary files for a successful
compilation, which are part of an individual project and not
included in the ESP-IDF.

The ESP-IDF provides a visual configuration menu
accessible by the command “make menuconfig” which is the
only graphical menu (Fig. 3). All other operations such as
compiling or flashing take place by executing simple
commands. Therefore, the open source IDE Eclipse provides
great support for Makefile project. A project should be
configured in order to use the xtensa-esp32-elf-gcc compiler
and refer the ESP-IDF for enabling autocomplete and debug
features, which are essential for proper program development.

Fig. 2. Function block diagram [8].

Fig. 3. ESP-IDF configuration menu.

It is also possible to flash ESP32 out of Eclipse without
terminal opening anymore.

The common language for programming ESP32 is C, thus
most API libraries are also provided in C. However, the
microcontroller can be also easily programmed in C++. Some
Arduino libraries can be used under C++ programming option,
although some changes might be required. Neil Kolban, an
engineer from Texas provides plenty of C++ libraries in his
GitHub repository for the ESP32 APIs. Since this chip is open
source everyone can develop an “operating system” for the
ESP32, thus there are also solutions on the Internet to program
it in LUA, JavaScript, etc.

IV. EXAMPLE APPLICATION OF ESP32

The variety of application of ESP32 is not limited to
common IoT projects, such as controlling sockets and lights
remotely in order to build a smart-home. The following
example is a project called “smartphone based oscilloscope”
aimed to build a prototype of a portable, wireless oscilloscope
based on the ESP-WROOM-32 as the hardware core and a
smartphone application as the display and control unit.

At the first stage of the project, the build-in ADC was
analysed in order to verify the accuracy of the conversion. A
voltage from 0.0V to 3.5V was applied to the ADC input in
steps of 0.1V and the measured values were recorded. This
test was repeated for different settings. The best result was
delivered at 12 bit resolution with an attenuation of −6dB (Fig.
4). These tests had also shown that the ADC input range does
not begin at 0.0V but at 0.17V instead. Thus, the decision was
made to use the range from 0.2V to 1.9V for this project.
Moreover, the average frequency was approximate 44.5 kHz
at 10-bit and 12-bit resolution. It was slightly higher at 9 bit
resolution approximate 45.9 kHz but that frequency gain was
not big enough to take the loss of resolution.

This provides a maximal frequency limit for the input
signal of this project of approximate 20 kHz since the
sampling frequency must be at least two times greater than the
signal frequency in order to sample the signal reliably. The
frequency of 20kHz is actually not suitable for an oscilloscope
but it is good enough for a first prototype and an excellent
opportunity to test ESP32 capabilities.

The chosen language was C++ because Adafruit provides a
C++ library for the MCP23017 I/O expander, which was used
to control the relays, and no such library exists in C. C++
implements also classes for good structured program. The
simplified program flowchart is shown in the Fig. 5.

The simplified flowchart illustrates the general program
structure. At the initial stage, the microcontroller must be
configured to provide the settings for the ADC, I2C bus and
APIs required for the communication between Wi-Fi module
and smartphone application. The settings for the ADC
comprised the resolution, attenuation and the channel. In order
to conduct this procedure, two instances of the created class
ADC_am were instantiated, one for each input channel and the
parameter were passed to the constructer. The I2C master
should be defined and initiated to use the I/O Expander. This
includes setting of the GPIOs to use as SCL and SDA as well
as the clock frequency moreover defining a GPIO, in this
project GPIO_NUM_17 as MCP23017 reset pin. Upon
completion of the procedure above, some classes have been
instantiated for Wi-Fi connection and socket server. Since the
data is continually streamed to the application a socket
connection will performs better than a HTTP request method.
The socket connection also needs to be established once and
causes less data overhead.

Once the configuration is completed the Wi-Fi access
point starts with the pre-set SSID and WPA2 password also an
event handler is passed to the Wi-Fi object in order to handle
connections. The socket server configured for the port 8001
starts as well at this point.

A float variable ch1 stores the voltage reading of the first
input channel. However, in order to store the voltage it must
run created scaleAndRound() function of the sbo class and
pass the data received from chan1.read() along with the
channel number. This is necessary because chan1.read()
returns a value from 0 to 4095 which equals to a certain

Fig. 4. ADC linearity test at 12 bit resolution.

Fig. 5. Microcontroller flowchart.

voltage depending on the scaling factor used at that channel.
This is shown in Fig. 6.

Depending on the passed channel number the scale is set to
the scaling factor of the channel one or channel two. Two
variables defaultVal and valPerVolt are implemented to
convert the measured value to an actual voltage. Since the
channel input ground potential at the middle of the ADC input
range, defaultVal stores the value equals to ground potential.
The dependency between input value and voltage is stored in
valPerVolt. Thus, a variable res represents the voltage at the
ADC channel input. To get the voltage at the actual PCB
channel input it is necessary to multiply res with the current
scaling factor of this channel. To limit the decimals to two the
function round() of the math.h library was used. Since it
rounds any given value to an integer it was necessary to
multiply it with 100.0 before and to divide it by 100.0 after
that step in order to keep two decimals. Finally, the formatted
value get returned the function output.

Along with the voltage value the main task stores the time
after reading the input. More precisely this is the time in
microseconds which the microcontroller runs since the power
up. This is necessary to let the application know how much
time passed since the last input to plot the traces correctly. 4
values are combined to a string or char array, which are
separated by commas and sent to the application if a
connection is established. If there is no connection available a
delay of 10 milliseconds will be built in to prevent triggering
the watchdog reset.

The blink task is very simple GPIO_NUM_5 is set the
value of a Boolean variable, this variable is then inverted and
the task waits one second until it repeats. This gives a visual
indication that ESP32 is still running and no error has
occurred.

The receive task is shown in Fig. 7. If a client is connected
to the socket server then this task lights up the connection
LED to show that a connection is established. Upon the
completion of the connection establishing, the task waits for
incoming data. As soon as data are received it is passed to the
exucuteCmd() function of the sbo object and printed on the
serial monitor for debugging purpose. The execute functions

checks first if the incoming char is a digit or a character.
Digits are the commands for the channel one, whereas the
characters are for the channel two. Depending on the values, it
will be passed on to the corresponding switch statement. The
cases inside that switch statement execute the command by
setting the relays along with the associated scaling factor.

If there is no communication between the Wi-Fi module
and the application then the previously defined
GPIO_NUM_4 which is powering the connection LED will be
set low. A delay of 100 milliseconds prevents the watchdog
reset from triggering.

Fig. 6. ESP32 main task listing.

Fig. 7. ESP32 receive task listing.

Fig. 8. Application output.

Fig. 9. PCB layout.

The application output is illustrated in Fig. 8. This app has
been developed in Visual Studio using the Cordova
framework in order to develop it for multiple OS. Cordova is a
common open source framework for hybrid cross-platform
applications.

The PCB designed and manufactured for this project
contains ESP-WROOM-32, a 3.3V and −3.3V power supply
and an USB-UART-Bridge for programming. Moreover, two
input channels include relays for the AC/DC/GND setting and
to set different scaling factors controlled by a MCP23017 I/O-
Expander along with a LM538 for each channel for scaling
and offset purposes.

V. CONCLUSION

This paper discusses a new ESP32 system on a chip series
with Wi-Fi and Bluetooth. A detailed comparison of several
IoT related modules has been provided to highlight the ESP32
microcontroller technical parameters and functions. An
example of the microcontroller application has been presented
and discussed in order to demonstrate practical
implementation of this new component.

It has been shown that ESP32 is the excellent option for
IoT devices due to the performance properties and price. The
microcontroller is available in various form-factors. The bread
board friendly version ESP32-DevKitC is a perfect solution
for hobbyist and educational purposes, the ESP-WROOM-32
module provides a small solder friendly footage whereas the
ESP32 QFN48 is the option for industrial manufactures and
small sized solutions.

ESP32 performs much better than its predecessor ESP8266
widely used in a large variety of IoT applications. The
excellent performance of the microcontroller is achieved due
to dual core structure and a significant extension of the
operational features. The microcontroller operating system
FreeRTOS is open source software providing a great support
for real time applications. Thus, it is expected that ESP32 will
play a major role in design of future IoT systems and
embedded projects.

REFERENCES

[1] S. Li, L.D. Xu, and S. Zhao, “The Internet of things: A survey,”
Information Systems Frontiers, vol. 17, no. 2, pp. 243–259, April 2015.

[2] L. Atzori, A. Iera, and G. Morabito, “The Internet of things: A survey,”
Computer Networks, vol. 54, no. 15, pp. 2787–2805, Oct. 2010.

[3] K.J. Singh, and D.S. Kapoor, “Create your own Internet of Things: A
survey of IoT platforms,” IEEE Consumer Electronics Magazine, vol. 6,
no. 2, pp. 56-68, April 2017.

[4] Espressif Systems. (2017, May 4). espressif.com [Online]. Available:
https://espressif.com/sites/default/files/documentation/
esp32_technical_reference_manual_en.pdf. [Accessed 10 May 2017].

[5] AI-Thinker Team. (2015). mintbox.in [Online]. Available: https://
mintbox.in/media/esp-12e.pdf

[6] Texas Instruments. (2017, March). ti.com [Online]. Available: http://
www.ti.com/lit/ds/symlink/cc3220mod.pdf

[7] Digi International Inc. (2015). digi.com [Online]. Available: https://
www.digi.com/pdf/ds_xbeewifis6b.pdf

[8] Espressif Systems. (2017, April 11) espressif.com [Online]. Available:
https://espressif.com/sites/default/files/documentation/
esp32_datasheet_en.pdf

[9] N. Kolban, Kolban’s Book on ESP32, USA: Leanpub, 2017.

